
CGS 3175: Internet Applications (CSS – Page Layout) Page 1 © Mark Llewellyn

CGS 3175: Internet Applications

Fall 2009

Cascading Style Sheets – Page Layout - Part 4

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cgs3175/fall2009

CGS 3175: Internet Applications (CSS – Page Layout) Page 2 © Mark Llewellyn

The CSS Box Model

bottom border

Content

bottom padding

bottom margin

left

margin

right

margin

top margin

top border

left

border

right

border

top padding

left

padding

right

padding

CGS 3175: Internet Applications (CSS – Page Layout) Page 3 © Mark Llewellyn

• In the past two sections of notes, we’ve looked in detail at

the box border, padding, and margins, as well as the float

and clear properties.

• In this section of notes, we’ll look more closely at the

position property. The position property is at the

heart of all CSS-based layouts. The position property

determines the reference point for the positioning of each

element box.

• There are four values for the position property:

static, absolute, fixed, and relative.

The position Property

CGS 3175: Internet Applications (CSS – Page Layout) Page 4 © Mark Llewellyn

• We’ll set up a running example demonstration

XHTML/CSS to illustrate the position property.

• The basic XHTML is shown on the next page, with its

rendering on the following page.

• Notice that the default position property for any

element is static.

• In the running example, the third paragraph is a special

paragraph (styled differently from the other paragraphs) so

that we can see the difference in the various position

property values.

The position Property

CGS 3175: Internet Applications (CSS – Page Layout) Page 5 © Mark Llewellyn

CGS 3175: Internet Applications (CSS – Page Layout) Page 6 © Mark Llewellyn

This version illustrates static positioning.

CGS 3175: Internet Applications (CSS – Page Layout) Page 7 © Mark Llewellyn

• The default position for any XHTML element is static.

• With static positioning, each element is simply laid out

one after the other (in normal flow), so the paragraphs in

our demo appear under each other, with their default

margin settings creating the space between them.

• To break away form this sequential (normal flow) layout

of the elements provided by the default static

positioning, you must change a box’s position property to

one of the other three possible values.

Static Positioning

CGS 3175: Internet Applications (CSS – Page Layout) Page 8 © Mark Llewellyn

• Relative positioning allows you to use the left and

right attributes to move the element with respect to the

position in which it would appear using normal flow.

• In our running demo example, notice on the next page that

we’ve changed the style for the special third paragraph to

now have position: relative.

p#specialpara {position:relative;

top:30px;

left:20px;

}

Relative Positioning

CGS 3175: Internet Applications (CSS – Page Layout) Page 9 © Mark Llewellyn

The special paragraph now uses

relative positioning. Its top is

moved down by 30 pixels and to

the right by 20pixels from where

it would appear in normal

rendering.

CGS 3175: Internet Applications (CSS – Page Layout) Page 10 © Mark Llewellyn

Notice that although the element

moves relative to its original

position, nothing else changes.

The space occupied by the

original static element is retained,

as is the positioning of the other

elements.

CGS 3175: Internet Applications (CSS – Page Layout) Page 11 © Mark Llewellyn

An even more drastic relative position

move, with the top set to 120 pixels. Notice

that although the element moves relative to

its original position, nothing else changes.

The space occupied by the original static

element is retained, as is the positioning of

the other elements.

CGS 3175: Internet Applications (CSS – Page Layout) Page 12 © Mark Llewellyn

Negative values also work which have the

effect of moving an element up and to the
left. In this case: top was set to -40px

and left was set to -20px.

CGS 3175: Internet Applications (CSS – Page Layout) Page 13 © Mark Llewellyn

• The thing to remember about relative positioning is that if

you move an element in this manner, you must allow

space for it.

• Using the example on page 10, you might take the next

step of adding a margin-top value of 30 pixels or greater

to the fourth paragraph in order to move it down, thus

preventing it from being overlapped by the repositioned

third paragraph. (See next page.)

Relative Positioning

CGS 3175: Internet Applications (CSS – Page Layout) Page 14 © Mark Llewellyn

The fourth paragraph is now styled to have

a margin-top: 40px. Which moves it out

from under the relocated third paragraph.

CGS 3175: Internet Applications (CSS – Page Layout) Page 15 © Mark Llewellyn

• Absolute positioning is a whole different beast from static

and relative positioning, since this type of positioning

takes an element entirely out of normal flow.

• With absolute positioning, the default positioning context is

the body of the document.

• In the running demo, we’ll modify the special paragraph to be

positioned absolutely.

p#specialpara {position:absolute;

top:30px;

left:20px;

}

Absolute Positioning

CGS 3175: Internet Applications (CSS – Page Layout) Page 16 © Mark Llewellyn

The special paragraph now uses

absolute positioning. Its top is

set at 30 pixels from the top of

the body element and its left side

is set at 20 pixels from the left

side of the body element.

CGS 3175: Internet Applications (CSS – Page Layout) Page 17 © Mark Llewellyn

Notice that the space previously occupied by the absolutely

positioned element is gone. The absolutely positioned

element has become entirely independent of the

surrounding elements in the markup and is now positioned
with respect to the <body> element.

CGS 3175: Internet Applications (CSS – Page Layout) Page 18 © Mark Llewellyn

• The default positioning context of an absolutely

positioned element is the body element.

• As the screen shot on the previous page illustrates, the

offset provided by the top and left attribute values

moves the element with respect to the body element – the

top ancestor container in the markup hierarchy – not with

respect to the element’s default position in the document

flow (as is the case with relative).

• The next slide illustrates the same example with

top:50px and left:80px.

Positioning Context

CGS 3175: Internet Applications (CSS – Page Layout) Page 19 © Mark Llewellyn

50 px

8
0

 p
x

CGS 3175: Internet Applications (CSS – Page Layout) Page 20 © Mark Llewellyn

• Because the absolutely element’s positioning context is

body, the element moves when the page is scrolled to

retain its relationship to the body element, which also

moves when the page scrolls.

• Before we look at how to use a different element than

body as the positioning context for an absolutely

positioned element, let’s look at the last of the four

positioning properties – fixed positioning.

Positioning Context

CGS 3175: Internet Applications (CSS – Page Layout) Page 21 © Mark Llewellyn

• Fixed positioning is similar to absolute positioning, except

that the element’s positioning context is the viewport (the

browser window or the screen of a handheld device, for

example), so the element does not move when the page is

scrolled.

• To really see this effect, you’ll need to download the

demo XHTML/CSS documents from this set of notes and

pay particular attention to the fixed positioning example.

Fixed Positioning

CGS 3175: Internet Applications (CSS – Page Layout) Page 22 © Mark Llewellyn

The special paragraph now uses

fixed positioning. Its top is set at

25 pixels from the top of the

browser window and its left side

is set at 30 pixels from the left

side of the browser window.

CGS 3175: Internet Applications (CSS – Page Layout) Page 23 © Mark Llewellyn

Note that the

paragraph has

remained at a

position 25px

from the top

and 30 pixels

from the left

even though

the body

element has

scrolled.

CGS 3175: Internet Applications (CSS – Page Layout) Page 24 © Mark Llewellyn

• This “nailed-to-the-browser” effect enables you to simulate

the effect of what are now deprecated frames (recall the

three flavors of XHTML: Strict, Transitional, and Frameset).

• For example, you can now create a navigation element that

stays put on the page when the page scrolls without the

problems that were associated with managing multiple

documents in a frameset (the old way of doing this).

• NOTE: the fixed position property does

not work in IE6, but does work in IE7

and IE8.

Fixed Positioning

CGS 3175: Internet Applications (CSS – Page Layout) Page 25 © Mark Llewellyn

• Now that we’ve seen all four types of positioning, let’s go

back and look at positioning context in more detail.

• Simply put, contextual positioning means that when you

move an element using the attributes top, right,

bottom, or left, you are moving that element with

respect to another element. That other element is known as

its positioning context.

• As we saw in the example on page 16, for absolute

positioning, the default positioning context for an absolutely

positioned element is body, unless you change it.

More On Positioning Context

CGS 3175: Internet Applications (CSS – Page Layout) Page 26 © Mark Llewellyn

• The body element is the containing element of all other

elements in your markup, but you can use any ancestor

element as a positioning context of another element by

changing the ancestor’s position value to relative.

• Consider the markup shown on the next page and its

rendering on the following page.

• QUESTION: Why isn’t the inner <div> 10 pixels down

from the top of the outer <div> and 20 pixels to the left, as

specified in the CSS?

More On Positioning Context

CGS 3175: Internet Applications (CSS – Page Layout) Page 27 © Mark Llewellyn

CGS 3175: Internet Applications (CSS – Page Layout) Page 28 © Mark Llewellyn

Positioning Context

The outer <div> has a solid red

3 pixel border. And it can be seen
setting behind the inner <div>.

Why do the two <div> elements

share the same origin (top-left)

point?

Answer on the next page.

CGS 3175: Internet Applications (CSS – Page Layout) Page 29 © Mark Llewellyn

• The answer to the question posed in the last example, is that the

inner (and irrelevantly, the outer) <div> element has the default

positioning of static. This means it is rendered in normal

flow, and because the outer <div> has not content, the inner

<div> starts in the same place.

• Only when you set an element to one of the other three

positioning options – relative, absolute, or fixed, - do

the top, right, bottom, and left attribute values

actually do anything.

• To illustrate this fact, consider the modified markup shown on the

next page, where the left and top attribute values have been

reset for the inner <div>. Notice that since we left it with its

default position it didn’t move!

Positioning Context

CGS 3175: Internet Applications (CSS – Page Layout) Page 30 © Mark Llewellyn

Greatly different values for
top and left attributes

CGS 3175: Internet Applications (CSS – Page Layout) Page 31 © Mark Llewellyn

The two <div> elements are

still in exactly the same relative
positions, even though the top

and left attribute values are

quite a bit different between

version 1 and version 2.

CGS 3175: Internet Applications (CSS – Page Layout) Page 32 © Mark Llewellyn

• Now let’s see what happens if we set the inner <div>

element’s position property to absolute.

• We’ll modify the CSS to be:

body {background-color:#FFC;}

div#outer_div {width:250px; margin:100px 40px;

border-top:3px solid red;}

div#inner_div{position:absolute; top:10px;

left:20px; background-color:#AAA;}

• The inner <div> element is now absolutely positioned, but

with respect to what? Where do you expect the inner

<div> element to be positioned?

Positioning Context

CGS 3175: Internet Applications (CSS – Page Layout) Page 33 © Mark Llewellyn

CGS 3175: Internet Applications (CSS – Page Layout) Page 34 © Mark Llewellyn

CGS 3175: Internet Applications (CSS – Page Layout) Page 35 © Mark Llewellyn

• As you can see on the previous page, since there is no

other relatively positioned element for the inner <div>

to reference, it positions itself by default with respect to

the <body> element.

• The top border of the outer <div> is set to red so you

can see where it is located. Its margins push it 50 pixels

down and 40 pixels to the left of the top corner of the

browser window.

• Because the inner <div>’s position property is set to

absolute, it is positioned relative to the <body> element,

because <body> is the default positioning context.

Positioning Context

CGS 3175: Internet Applications (CSS – Page Layout) Page 36 © Mark Llewellyn

• In other words, the inner <div> element entirely ignores its

parent (the outer <div> element), and its top and left

attributes offset it with respect to the <body> element, as shown

in the rendering on pages 34 and below.

Positioning Context

This <div> has position static by default. Thus

the inner <div> has no relatively positioned

element to base its absolute position on other than
the default positioning context of the <body>

element.

CGS 3175: Internet Applications (CSS – Page Layout) Page 37 © Mark Llewellyn

• As the final example for explaining positioning context,

let’s now set the outer <div> element’s position

property to relative.

• This will now cause the positioning context of the

absolutely positioned inner <div> element to become

the outer <div> element in which it is nested.

• This means the setting the top and left attributes of the

inner <div> element now positions it with respect to the

outer <div> element.

Positioning Context

CGS 3175: Internet Applications (CSS – Page Layout) Page 38 © Mark Llewellyn

Technique for clearing

CGS 3175: Internet Applications (CSS – Page Layout) Page 39 © Mark Llewellyn

Once the outer <div> has a relative positioning

property set, absolutely positioned descendants

position themselves relative to it, as defined by
their top and left attributes.

CGS 3175: Internet Applications (CSS – Page Layout) Page 40 © Mark Llewellyn

• If you set the top and left attribute values of the outer

<div> element to anything other than 0, the inner <div>

would move to maintain its positioning relationship to the

outer <div>, which is its positioning context.

• This last example more clearly illustrates this (it really is the

last example this time).

• In this very last example, we’ll reset the margins of the outer

<div> element drastically from their original position.

The thing to notice is how the inner <div> element move

with respect to the new position of the outer <div>.

Positioning Context

CGS 3175: Internet Applications (CSS – Page Layout) Page 41 © Mark Llewellyn

CGS 3175: Internet Applications (CSS – Page Layout) Page 42 © Mark Llewellyn

CGS 3175: Internet Applications (CSS – Page Layout) Page 43 © Mark Llewellyn

• Just as every element has a position property, every

element also has a display property.

• Although there are quite a number of display property

values, the most commonly used elements have a default

display property value of either block or inline.

• Block elements, such as paragraphs, headings, and lists, sit

one above another when displayed in the browser.

• Inline elements, such as anchor, span, and img, sit side-by-

side when they are displayed in the browser and only appear

on a new line if there is insufficient room on the previous

line.

The display Property

CGS 3175: Internet Applications (CSS – Page Layout) Page 44 © Mark Llewellyn

• The ability to change block elements to inline elements, and

vice versa is a powerful capability that allows you, for

example, to force an inline element to fill its containing

element. We’ll do this later with links when we create CSS

drop-down menus.

• Changing an element’s display property is done like this:

p {display: inline; }

a {display: block; }

The display Property

block by default

inline by default

CGS 3175: Internet Applications (CSS – Page Layout) Page 45 © Mark Llewellyn

• The other value for the display property that is worth

discussing here is none.

• When an element’s display property is set to none, that

element, and any elements nested inside it, are not displayed

on the page. Any space that was occupied by the element is

removed; its as if the related markup did not exist.

• NOTE: This contrasts with the visibility property, which

simply has the values visible or hidden. If an element’s

visibility is set to hidden, the element is hidden, but the

space it occupied remains. We’ll see more on this later.

The display Property

CGS 3175: Internet Applications (CSS – Page Layout) Page 46 © Mark Llewellyn

CGS 3175: Internet Applications (CSS – Page Layout) Page 47 © Mark Llewellyn

All three <div> elements display in their

normal block style sitting one on top of

another. All are displayed.

CGS 3175: Internet Applications (CSS – Page Layout) Page 48 © Mark Llewellyn

The <div> element styled using class

box2 has its display property set to none.

Notice on the next page that the space that

would have been occupied by the second

box has disappeared and box3 moves into

that space.

CGS 3175: Internet Applications (CSS – Page Layout) Page 49 © Mark Llewellyn

